
  information

Article

A 2D Convolutional Gating Mechanism for Mandarin
Streaming Speech Recognition

Xintong Wang 1 and Chuangang Zhao 2,*

����������
�������

Citation: Wang, X.; Zhao, C. A 2D

Convolutional Gating Mechanism for

Mandarin Streaming Speech

Recognition. Information 2021, 12, 165.

https://doi.org/10.3390/info12040165

Academic Editor: Ricardo Ribeiro

Received: 7 March 2021

Accepted: 8 April 2021

Published: 12 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Science, Beijing Forestry University, Beijing 100083, China; xintongwang@bjfu.edu.cn
2 School of Information Science & Technology, Beijing Forestry University, Beijing 100083, China
* Correspondence: zhaochuangang@bjfu.edu.cn

Abstract: Recent research shows recurrent neural network-Transducer (RNN-T) architecture has
become a mainstream approach for streaming speech recognition. In this work, we investigate the
VGG2 network as the input layer to the RNN-T in streaming speech recognition. Specifically, before
the input feature is passed to the RNN-T, we introduce a gated-VGG2 block, which uses the first two
layers of the VGG16 to extract contextual information in the time domain, and then use a SEnet-style
gating mechanism to control what information in the channel domain is to be propagated to RNN-T.
The results show that the RNN-T model with the proposed gated-VGG2 block brings significant
performance improvement when compared to the existing RNN-T model, and it has a lower latency
and character error rate than the Transformer-based model.

Keywords: streaming speech recognition; RNN-Transducer; gating mechanism; VGG

1. Introduction

With the development of artificial intelligence, automatic speech recognition (ASR)
has contributed to improving the efficiency of human productive activities (e.g., recording
meetings, automatically captioning videos, interacting with modern smart devices by
sending voice commands directly, etc.). The ASR process generally converts the speech
signals into symbol sequences; for example, the speech signal can be an utterance from
a speaker, and the symbol sequence is its corresponding text. Whereas, offline ASR
systems take the entire utterance as input to produce output symbols, streaming ASR
systems process the speech signals as a streaming input, which means that hypotheses are
generated as soon as possible once the first frame has arrived. We are interested in such
low latency systems not only for ASR systems, but also some downstream tasks, such as
spoken dialogue systems [1] and real-time translation systems [2].

Over the past few years, some end-to-end models for offline applications [3–7] have
gained performance comparable to that of humans. However, these models cannot be
directly applied to real-time scenarios because of their high latency. In contrast, recur-
rent neural networks (RNNs) are a natural architecture for building such a streaming
model, which produces output that relies only on the current input and previous state
history. Several models employing RNNs with LSTM [8] cells for streaming purposes
have been proposed previously, including the recurrent neural aligner (RNA) [9], neural
transducer [10], and RNN-Transducer (RNN-T) [11–13]. RNN-T is very well suited for
on-device applications because it has the ability to perform streaming, high-accuracy, and
low-latency [14].

However, the sequential nature of RNNs also restricts RNN-T to its input at the cur-
rent time step, missing future information. Therefore, several models based on attention
mechanisms have been proposed to make it possible for Transducer models to exploit
contextual information. Transformer-Transducer (T-T) [15,16] has been proposed on speech
recognition, with Transformer [17] becoming the state-of-the-art approach in the language
modeling and machine translations fields [18–20]. They replaced LSTM with the encoder
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part of Transformer, which mainly includes multi-head attention mechanisms, feedforward
networks, and layer normalization, have been proposed on speech recognition. Experi-
ments that are based on T-T show that the accuracy of the streaming model considering
contextual information is comparable to that of the offline models. Truncated self-attention
adopted in [15] and masked self-attention adopted in [16] both reduce the error rate of the
streaming model.

In general, the T-T model requires a deep Transformer. If each layer of the Transformer
calculates the attention scores of the input sample points with the same context range, e.g.,
in [16], each layer masks the same number of future speech frames, the deep transformer
will superimpose a high-latency. One solution is to make the context extracting mechanism
independent of the deep network, acting only as an input layer. Thus, the depth-wise
convolutional network is well suited as the so-called input layer.

The output of the depth-wise convolutional network incorporates the spatial and
channel-domain features through its perceptual field. The multi-channel feature is a unique
property of the convolutional network, also known as the width of the convolutional
network, which is determined by the number of convolutional kernels. That is, the more
convolutional kernels there are, the more channel-wise features can be extracted. Several
studies and experiments [21,22] have shown that the shallow wide convolutional networks
outperform the deep narrow convolutional networks for these tasks.

In this paper, we propose an Encoder architecture for Transducer that incorporates
the properties of convolutional networks to extract contextual information and the ability
of LSTM to learn historical information. Our model is trained on the AISHELL-1 [23]
dataset, containing over 170 h of speech being recorded by 400 speakers in a quiet office
and obtains a character error rate (CER) of 12.9%, outperforming the previously proposed
LSTM-based Transducer models [11–13]. When compared with the Transformer-based
Transducer model with the same convolutional networks, our model only has the latency
of the model employed unidirectional Transformer, but it achieves a comparable CER of
the model, which looks ahead for three frames.

The main contributions of this paper are as follows:

1. We combine convolutional networks with LSTM as the Encoder of Transducer to build
a low-latency streaming speech recognition model. These convolutional networks are
built in the form of VGG2 [24] networks, which are the first two layers of VGG16, a
deep convolutional network architecture. Additionally, the maximum pooling layer
is retained to reduce the frame rate, which improves the training efficiency.

2. We introduce a two-dimensional (2D) convolutional gating mechanism inside VGG2,
called gated-VGG2, which controls what information will flow into LSTM. The gating
mechanism employs half of the channel features that are generated by the convolu-
tional network to form gate states acting on the other half of the channel features, so
that twice the channel information can be learned, which improves the performance
of the model.

3. There are no temporal dependencies in the gating mechanism, so that our model is
easy to train in parallel.

This paper is organized, as follows, Section 2 presents the work related to this paper.
Section 3 discribes the structure of the proposed model. Section 4 presents the experimental
results on the AISHELL-1 dataset, and Section 6 provides concluding remarks.

2. Related Works

Developing a streaming speech recognition systems has been a hot issue in speech
recognition in recent years. As already introduced in the previous section, RNN-T and T-T
are two commonly used streaming models. Several pieces of research are devoted to fusing
convolutional networks in the T-T model. Among the methods that were proposed in these
studies, some of the methods for convolutional network enhancement come from the fields
of natural language processing and computer vision.
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T-T has been combined with the VGG network when it was first proposed in [15].
The VGG network plays two roles in T-T as an input layer: (1) adding relative position
information to Transformer; and, (2) downsampling the input features through the pooling
layer. Another study [25] also confirms that the convolutional approach is more helpful to
extract the position information of the input sequence.

Whereas the convolutional network is used as the input layer in VGG T-T, the convolu-
tional network alternates with the deep Transformer layer in Conv. Transformer-Transducer
(ConvT-T) [26]. The convolutional network and Transformer form three blocks in ConvT-T,
with the convolutional network in the latter two blocks incorporating more implicit features.
Moreover, there is only unidirectional Transformer layers in ConvT-T, which achieves a
low latency model.

Conformer [6] is designed as an architecture with a multi-head attention module and
a convolutional module, and a pair of feedforward network modules. The multi-head
attention module and feedforward network module follow the form of the Transformer,
and the convolutional module is the key part of the Conformer, which is mainly a depth-
wise convolutional layer that is sandwiched between two point-wise convolutional layers.
Specifically, the conformer chooses gated linear units (GLU) [27] as the activation function
for the first point-wise convolutional layer. The output channels of the first point-wise
convolutional layer are twice the number of input channels, and the GLU resizes the output
features to exactly the size of the input features, while it contains two times the channel
information. In fact, the number of input channels is counted as the feature dimension at
the current time step, so GLU is a feature frequency-wise gating mechanism in Conformer.

Researches on convolutional channels have focused on making convolutional net-
works more expressive by enhancing or suppressing some specific channel features. Some
of the approaches that are derived from the above studies have become essential modules
for convolutional networks, e.g., NetInNet [28] and SEnet [29]. NetInNet proposed 1x1
convolutional networks, in which the weights are learned for channels on a specific task,
In contrast, SEnet added a gating mechanism to channels, which learned gating states
through the global average of the features of that channel as the initial value.

In our work, we apply the convolution method to RNN-T. Similar to Conformer, GLU
is chosen as the channel gating mechanism, but our GLU really acts on the multi-channel
features that are generated by a set of convolutional kernels, which is a channel-wise gating
mechanism. Additionally, we also experimentally tested another gating mechanism: gated
tanh units (GTU). The results are shown in Section 4, where GTU outperforms GLU in our
proposed model.

3. Transducer

Consider a model that consists of an Encoder, a Prediction network, and a Joint net-
work, as illustrated in Figure 1. Given an input speech feature sequence x = (x1, x2, . . . , xT)
of length T and the output symbol sequence y = (y1, y2, . . . , yU) of length U, the Encoder
encodes the inputs x1:t to obtain the acoustic feature representation ft and the Prediction
network encodes the symbols y0:u−1 to produce the symbol representation gu−1. We de-
note that Y is the output symbol space that consists of K symbols, φ is the blank symbol,
indicating that it outputs nothing at the current time-step, and the extended output space
Ȳ = (φ

⋃Y). For streaming, a Joint network would produce a probability distribution
P(k|t, u − 1) over Ȳ for each combination of ft at input time-step t and gu−1 at output
time-step u− 1, which finally goes through the softmax layer to produce a symbol yu that
will be the next input of the Prediction network if it is a non-blank symbol. Otherwise, gu−1
fuses with the next frame ft+1 to keep on predicting yu. The Encoder can be expressed as
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Equations (1)–(5), where y0 is the φ and superscript k is the k-th element of the vectors in
Equation (3).

ft = Encoder(x1:t), t = 1, 2, . . . , T, (1)

gu−1 = Pred(y0:u−1), u = 1, 2, . . . , U, (2)

h(k, t, u) = Joint( ft, gu−1), (3)

P(k ∈ Ȳ|t, u) = so f tmax(h(k, t, u)), (4)

yu = arg max
k

P(k ∈ Ȳ|t, u). (5)

Figure 1. Tranducer decoding process.

3.1. RNN-Transducer

RNN-Transducer (RNN-T) employed LSTM for both Encoder and the Prediction
network. The version of LSTM used in this paper is implemented according to the following
composite function:

it = σ(Wiixt + bii + Whiht−1 + bhi), (6)

ft = σ
(

Wi f xt + bi f + Wh f ht−1 + bh f

)
, (7)

gt = tanh
(

Wigxt + big + Whght−1 + bhg

)
, (8)

ot = σ(Wioxt + bio + Whoht−1 + bho), (9)

ct = ft � ct−1 + it � gt, (10)

ht = ot � tanh(ct), (11)

where ht and ht−1 are the hidden states at time-step t and t − 1, ct and xt are the cell
states and input at time-step t, and it, ft, gt, ot are the input, forget, cell, and output gates,
repectively. The Wij and bij refer to the learnable weights and bias between units with the
index of gate name i and j. σ is the sigmid function, and � is the Hadamard product. The
previous cell states are not involved in the formation of the gates, and this is to allow the
model to have fewer parameters, which is different from LSTM in [11,12].

The joint network is implemented in the form

Joint( ft, gu−1) = Wo(W f ft + Wggu−1 + bi) + bo, (12)

where W f , Wg, Wo, bi, and bo are the learnable weights and biases, respectively.

3.2. Training

Transducer introduces φ in the hypothesis to align speech sequences and symbol
sequences, called an alignment a. By removing φ, the alignment a can be folded into
a corresponding symbol sequence y (e.g., a = (φ, y1, φ, y2, y3, φ) is equivalent to y =
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(y1, y2, y3)). Given an input speech sequence x and a target sequence y, the sum over all
conditional probabilities of the alignments is defined as the probability of generating y

P(y|x) = ∑
a∈A

P(a|x), (13)

where A is a set consisting of all alignments equal to y.
According to the forward-backward algorithm, the forward probability α(t, u) is

defined as

α(t, u) = P(y1, y2, . . . , yu|x1, x2, . . . , xt) (14)

= α(t− 1, u)P(φ|t− 1, u) + α(t, u− 1)P(yu|t, u− 1). (15)

Additionally, the backward probability β(t, u) is defined as

β(t, u) = P(yu+1, yu+2, . . . , yU |xt, xt+1, . . . , xT) (16)

= β(t + 1, u)P(φ|t + 1, u) + β(t, u + 1)P(yu+1|t, u). (17)

Thus, P(y|x) can be rewritten as the sum of the products of the forward and backward
probabilities of all points that satisfy ∀n = t + u, where 1 ≤ n ≤ T + U.

P(y|x) = ∑
t+u=n

α(t, u)β(t, u). (18)

The training model is to minimize the loss −lnP(y|x) of the target sequence y.

4. Extension to Gated-VGG2 RNN-T

So far, we have considered the RNN-T model in which each output conditioned its
corresponding historical information. This model is too restrictive to consider contextual
information of current frame. In this section, we extend RNN-T to include convolutional
networks, pooling layers, and a gating mechanism as an input layer to fuse spatial and
channel information of the input features, as illustrated in Figure 2. The above model could
be called a gated-VGG2 RNN-T, since the encoder consists of a gated-VGG2 block and an
N-layer LSTM, and the Prediction network is the multilayer LSTM.

Figure 2. The architecture of proposed Transducer model.

The gated-VGG2 block is an architecture that is designed based on VGG2, the first
two layers of VGG16, and a 2D convolutional gating mechanism. The VGG2 network
is organized, as follows: there are four layers of convolutional networks, each of which
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applies the rectified linear unit (ReLU) [30] as the nonlinear activation function, and each
two-layer convolutional network is followed by a maximum pooling layer. In our work,
the gating mechanism is inserted between the last convolutional network and its activation
function. When considering the input speech features as single-channel features, a set
of convolutional networks will output multi-channel features. The gating mechanism
executes element-wise multiplication of channel-specific spatial domain features, so we call
it a 2D convolutional gating mechanism. After a series of convolutional networks, pooling
layers, and the gating mechanism, we denote the output of the gated-VGG2 block as x̃.

4.1. Convolutional Network

Each convolutional layer maps the input features x with Cin channels to output
features h with C channels as Equation (19), where s is the s-th input channel, kc is the
parameters of the c-th kernel, and hc is the c-th channel output. For simplicity of expression,
the bias is neglected in the formula.

hc = Conv(x) = kc ∗ x =
Cin

∑
s=1

ks
c ∗ xs. (19)

4.2. Activation Function

We only consider the ReLU function as the nonlinear activation function for the
convolutional network, because it has a constant gradient of 1 in regions that are larger
than 0, which could avoid down-scaling the gradient, leading to gradient vanishing. The
ReLU function is calculated, as follows, where x is the output of the previous convolutional
layer.

ReLU(x) = max{0, x}. (20)

4.3. Max Pooling Layer

The max pooling layer outputs the maximum value within the receptive field. We
denote that i is the time domain index, j is the frequency domain index , m, s are the kernel
size and stride in the time domain, and n, d are the kernel size and stride in the frequency
domain. Given input x, the output of the max pooling layer is

MaxPool(x) = max{xi,j, xi+m−1,j, xi,j+n−1, xi+m−1,j+n−1}. (21)

If the size of the input feature x is T× D, where T and D represent the dimensions in
the time domain and frequency domain, respectively, the dimension T′ × D′ of the output
feature is

T′ = dT −m
s
e+ 1, (22)

D′ = dD−m
d
e+ 1, (23)

where d·e is the round up function.

4.4. 2D Convolutional Gating Mechanism

Employing the gating mechanism to control the information flow in a network has
proved successful for RNNs. The input gate and forget gate of LSTM will have to learn
when to release and write scaled information to the memory unit, and the output gate will
have to learn what information needs to be trapped in the memory unit. Without these gates,
LSTM would easily harm learnable short-term memories by storing long-term memories. In
this paper, we introduce a two-dimensional (2D) convolutional gating mechanism to control
what features can flow to the LSTMs. See Figure 3 (where Cin = C = 4 for simplicity),
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where input after convolutional operators is split in half along channel-dimension to form
u1 and u2. Only half of the multi-channel features could be output, where the other half
features will be transformed into gate states by a sigmoid function. Subsequently, these
gate states act on the other half of the channel features to generate gated units, which are
the output of the gating mechanism.

Figure 3. Two-dimensional (2D) convolutional gating mechanism.

Inspired by the work of [27], we consider both gated linear units (GLU) and gated tanh
units (GTU) forms of gating mechanism to produce output o in Equations (24) and (25),
where σ is the sigmoid activation function and � is the Hadamard product between
two matrices.

GLU : = u1 � σ(u2), (24)

GTU : = tanh(u1)� σ(u2). (25)

The local gradients of GLU and GTU are calculated as

∇[tanh(u1)� σ(u2)] = tanh′(u1)∇u1 � σ(u2) + tanh(u1)� σ′(u2)∇u2, (26)

∇[u1 � σ(u2)] = ∇u1 � σ(u2) + u1 � σ′(u2)∇u2. (27)

where both the values of tanh and tanh′ are between 0 and 1. Then we can get the corollary:

∇[tanh(u1)� σ(u2)] < ∇[u1 � σ(u2)]. (28)

Essentially, the gradient in the backpropagation wil be downscaled, which may lead
to a gradient vanishing when using the GTU, and the GLU does not have downscaled
factors and, therefore, it can avoid this problem better.

However, the tanh function scales the input features to within the interval of [−1,1]
with mean 0, which can be seen as a data normalization operation that makes it easier for
the model to converge to an optimal value in training, e.g., we found the better performance
of GTU in our experiments.
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Given the input speech features x, the gated-VGG2 block output x̃ according to the
following combination of equations

h1 = Conv(Conv(x)), (29)

u1 = MaxPool(ReLU(h1)), (30)

h2 = Conv(Conv(u1)), (31)

g = Gating(h2), (32)

u2 = MaxPool(ReLU(g))), (33)

x̃ = Flatten(u2), (34)

where x̃ is obtained by flattening the multi-channel features of u2 into 1-dimensional
features at every timestep.

5. Latency

In our proposed model, all of the latency comes from the convolutional layers and
the pooling layers. We set the kernel size to 3 × 3 with stride 1 in the convolutional layer
and 2 × 2 with stride 2 in the pooling layer. A padding is added to both ends of the input
sequence before each convolutional operation. Generating x̃0 actually requires waiting for
x6 to arrive, as shown in Figure 4. A latency of 60 ms will be introduced if the frame rate of
the input features is 10 ms.

Figure 4. The latency of our proposed model.

6. Experiment
6.1. Corpus

We use the public AISHELL-1 Mandarin speech corpus for experiments. Table 1 shows
the details of the corpus.

Table 1. AISHELL-1 Mandarin speech corpus.

AISHELL-1 Duration Speaker Utterance

train 150 h 340 120,098
validation 10 h 40 14,326

test 5 h 20 7176

6.2. Hyperparameter Setting

In all of the experiments, we extract the 80-dimensional log Mel-filter banks as features
on 25 ms, with a 10 ms shift, and normalize to zero-mean and unit-variance.
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Table 2 shows the Encoders used in all experiments. For (Bi)LSTM, hs represents the
hidden layer size of the LSTM. For Transformer, d represents the input size, h represents the
number of heads of the multi-head attention, and u represents the size of the feedforward
network. The maximum pooling layers in our (gated-)VGG networks are both of size 2 × 2
with a stride of 2 to achieve a lower frame rate of 40 ms. The outputs in the first and second
layers of the (Bi)LSTM are downsampled by a factor of 2, respectively, to bring the model
to the same frame rate.

The corpus consists of 4233 Chinese characters (including “"blank” and “unk” tags),
each of which is represented using a 320-dimensional embedding. We choose two-layer
LSTM with 1024 hidden units as the Prediction network, and the size of the Joint network
is 320. For the training step, we utilized adadelta [31] optimizer with an initial learning rate
of 1.0. All of the models are trained 20 epochs on the training set and cross-validated using
the validation set after each epoch. The training will stop early, if there is no performance
improvement for three consecutive times. All the models in our experiments were built
using the Espnet [32] toolkit.

Table 2. Encoder hyperparameters.

BiLSTM LSTM VGG2 Gated-VGG2 Transformer

4× BiLSTM 5× LSTM Conv3-64 Conv3-64 12× Transformer
hs = 640 hs = 1024 Conv3-64 Conv3-64 d = 512, h = 4, u = 2048

maxpool maxpool

Conv3-128 Conv3-256
Conv3-128 Conv3-256

maxpool maxpool

6.3. Performance
6.3.1. Gating Mechanism

We evaluated the effect of GLU and GTU, respectively. Table 3 shows the results; a
lower CER is obtained using GTU than GLU on the model with our proposed gated-VGG2
block. We present the scaling of local gradients by the tanh function and the possible
impact of the normalization of the tanh function on the performance in 3.1.5. The results
show that the effect of local gradient scaling on the model is cancelled out.

Table 3. Comparison of two gating mechanisms: gated linear units and gated tanh units on CER.

Gating Mechanism CER(Test) Sub. Del. Ins.

GTU 12.9 11.9 0.7 0.3
GLU 13.1 12.1 0.7 0.3

6.3.2. Beam Search

In the decoding stage, we use the beam search algorithm in [11], where the size of the
beam will affect the decoding speed and performance of the model. Figure 5 shows the
decoding results of our proposed model (GTU) with an increasing beam width from 0 to
10, where a beam width of 0 represents greedy decoding. The results show that a beam
width of 5 can achieve the balance of accuracy and cost.
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Figure 5. Decoding results of different beam width in beam search.

6.3.3. End-to-End Model

Table 4 shows the character error rate (CER) of our model (GTU) and other LSTM-
based models. All of the models use the same structure and hyperparameters for the
Prediction and Joint networks. In the decoding stage, we use a beam search of beam size
5 without language model. The streaming model that is based on our proposed model
achieves the lowest CER and it outperforms the offline model with BiLSTM Encoder.

Table 4. Transducer models on the aishell-1 data set.

Encoder CER(Test) Sub. Del. Ins.

BiLSTM 13.2 12.3 0.6 0.3
LSTM 17.2 15.3 1.4 0.5

+ VGG2 13.4 12.4 0.7 0.3
+ Gated (ours) 12.9 11.9 0.7 0.3

Secondly, we compare the performance of our case with the Transformer-based model.
In particular, to keep the same frame rate, we compared with the model with a VGG2-
Transformer Encoder, which is a combination of VGG2 and the 12-layer Transformer in
Table 2. As shown in Table 5, we test the model in full attention, unidirectional attention
and with different sizes of lookahead, respectively. Increasing the lookahead sizes in the
Transformer layers is effective in reducing CER, but it introduces a significant amount of
latency. The CER of our proposed model is comparable to that of the lookahead three-frame
model, with only unidirectional latency.

Table 5. Comparison of gated-VGG2 LSTM and streaming Transformer in terms of latency and CER.

Encoder Latency CER(Test) Sub. Del. Ins.

gated-VGG2 LSTM 60 ms 12.9 11.9 0.7 0.3

VGG2-Transformer [15]
Full attention INF 11.4 10.0 1.1 0.3
unidirectional 60 ms 19.9 18.6 1.0 0.3
Lookahead 1 540 ms 16.9 15.8 0.8 0.3
Lookahead 2 1020 ms 14.6 13.5 0.8 0.3
Lookahead 3 1500 ms 13.0 12.0 0.7 0.3

7. Conclusions

In this paper, we proposed the gated-VGG2 block, a feature fusion module that is
designed to capture the contextual information in streaming speech recognition through
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convolutional networks and enhance informative information through a gating mecha-
nism. The experiments show that the streaming model based on the gated-VGG2 block
achieves lower CER compared to other LSTM models, and has lower latency compared
to a Transformer-based model with similar accuracy. In addition, the gated-VGG2 block
illustrates the inability of previous VGG2 networks to adequately consider the importance
of features. We hope that this insight can be useful for other tasks that rely on convolutional
networks to represent features.
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